 
 
     
      
       
         MoEML’s PDF Developer Documentation
         
           Author 
          
           Tracey El Hajj
        
         
           Junior Programmer 
          
           Tracey El Hajj
        
         
           Programmer 
          
           Joey Takeda
         
           Programmer 
          
           Martin Holmes
        
         
           Project Manager 
           Ryann McQuarrie-Salik
        
         
           Project Director 
          
           Janelle Jenstad
        
      
      
       
          The Map of Early Modern London http://mapoflondon.uvic.ca/includes.xml Victoria, BC, Canada 
         Department of English
         P.O.Box 3070 STNC CSC
         University of Victoria
         Victoria, BC
         Canada
         V8W 3W1
     2016 University of Victoria 978-1-55058-519-3 
           Janelle Jenstad
           london@uvic.ca
         
             Copyright held by  The Map of Early Modern London on behalf of the contributors.
             
               This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 
            
             Further details of licences are available from our
               Licences page. For more
              information, contact the project director,  Janelle Jenstad, for
              specific information on the availability and licensing of content
              found in files on this site.
        
      
      
      
       
  Provider: University of Victoria
Database: The Map of Early Modern London
Content: text/plain; charset="utf-8"

TY  - ELEC
A1  - El Hajj, Tracey
ED  - Jenstad, Janelle
T1  - MoEML’s PDF Developer Documentation
T2  - The Map of Early Modern London
ET  - 7.0
PY  - 2022
DA  - 2022/05/05
CY  - Victoria
PB  - University of Victoria
LA  - English
UR  - https://mapoflondon.uvic.ca/edition/7.0/pdfDev_about.htm
UR  - https://mapoflondon.uvic.ca/edition/7.0/xml/standalone/pdfDev_about.xml
TY  - UNP
ER  - 
    El Hajj,  Tracey.  MoEML’s PDF Developer Documentation.  The Map of Early Modern London, Edition  7.0, edited by    Janelle  Jenstad,  U of Victoria,  05 May 2022,  mapoflondon.uvic.ca/edition/7.0/pdfDev_about.htm. Draft.
    El Hajj,  Tracey.  MoEML’s PDF Developer Documentation.  The Map of Early Modern London, Edition  7.0. Ed.    Janelle  Jenstad.  Victoria:  University of Victoria. Accessed  May 05, 2022.  mapoflondon.uvic.ca/edition/7.0/pdfDev_about.htm. Draft.
    El Hajj,  T.  2022.  MoEML’s PDF Developer Documentation. In    J.  Jenstad (Ed),  The Map of Early Modern London (Edition  7.0).  Victoria:  University of Victoria. Retrieved  from  https://mapoflondon.uvic.ca/editions/7.0/pdfDev_about.htm. Draft.
   
       
        Ryann McQuarrie-Salik
        Ryann
        McQuarrie-Salik
        RM
      
       
        Project Manager, 2020.
      
      
       
        Tracey El Hajj
        Tracey
        El Hajj
        TEH
      
       
        Junior Programmer 2018-2020. Research Associate 2020-2021. Tracey received her PhD from the Department of English at the University of Victoria in the field of Science and Technology Studies. Her research focuses on the  algorhythmics of networked communications. She was a 2019-20 President’s Fellow in Research-Enriched Teaching at UVic, where she taught an advanced course on  Artificial Intelligence and Everyday Life. Tracey was also a member of the  Linked Early Modern Drama Online team, between 2019 and 2021. Between 2020 and 2021, she was a fellow in residence at the Praxis Studio for Comparative Media Studies, where she investigated the relationships between artificial intelligence, creativity, health, and justice. As of July 2021, Tracey has moved into the alt-ac world for a term position, while also teaching in the English Department at the University of Victoria.
      
      
       
        Joey Takeda
        Joey
        Takeda
        JT
      
       
        Programmer, 2018-present. Junior Programmer, 2015-2017. Research Assistant, 2014-2017.
        Joey Takeda was a graduate student at the University of British Columbia in the Department
        of English (Science and Technology research stream). He completed his BA honours in English
        (with a minor in Women’s Studies) at the University of Victoria in 2016. His primary
        research interests included diasporic and indigenous Canadian and American literature,
        critical theory, cultural studies, and the digital humanities.
      
      
       
        Janelle Jenstad
        Janelle
        Jenstad
        JJ
      
       
        Janelle Jenstad is Associate Professor of English at the University of Victoria, Director
        of  The Map of Early Modern London, and PI of  Linked Early Modern Drama Online. She has taught at Queen’s University, the Summer
        Academy at the Stratford Festival, the University of Windsor, and the University of
        Victoria. With Jennifer Roberts-Smith and Mark Kaethler, she co-edited  Shakespeare’s Language in Digital Media ( Routledge). She has prepared a documentary edition of John Stow’s  A
         Survey of London (1598 text) for MoEML and is currently editing  The Merchant of Venice (with Stephen Wittek) and Heywood’s  2 If
         You Know Not Me You Know Nobody for DRE. Her articles have appeared in  Digital Humanities Quarterly,  Renaissance and
         Reformation, Journal of Medieval and Early Modern Studies,
          Early Modern Literary Studies,  Elizabethan
         Theatre,  Shakespeare Bulletin: A Journal of Performance
         Criticism, and  The Silver Society Journal. Her book
        chapters have appeared (or will appear) in  Institutional Culture in Early
         Modern Society (Brill, 2004),  Shakespeare, Language and the Stage,
         The Fifth Wall: Approaches to Shakespeare from Criticism, Performance and Theatre
         Studies (Arden/Thomson Learning, 2005),  Approaches to Teaching
         Othello (Modern Language Association, 2005),  Performing Maternity
         in Early Modern England (Ashgate, 2007),  New Directions in the
         Geohumanities: Art, Text, and History at the Edge of Place (Routledge, 2011), Early
        Modern Studies and the Digital Turn (Iter, 2016),  Teaching Early Modern
         English Literature from the Archives (MLA, 2015),  Placing Names:
         Enriching and Integrating Gazetteers (Indiana, 2016),  Making
         Things and Drawing Boundaries (Minnesota, 2017), and  Rethinking
         Shakespeare’s Source Study: Audiences, Authors, and Digital Technologies
        (Routledge, 2018).
      
      
       
        Martin D. Holmes
        Martin
        D.
        Holmes
        MDH
      
       
        Programmer at the University of Victoria Humanities Computing and Media Centre (HCMC).
        Martin ported the MOL project from its original PHP incarnation to a pure eXist database
        implementation in the fall of 2011. Since then, he has been lead programmer on the project
        and has also been responsible for maintaining the project schemas. He was a co-applicant on
        MoEML’s 2012 SSHRC Insight Grant.
      
       Born Digital
     
       
         
         
      
    
    
     
      
       
        Our editorial and encoding practices are documented
        in detail in the  Praxis
        section of our website.
      
       
       
        Author
        A person or
        organization chiefly responsible for the intellectual or artistic content of a work, usually
        printed text. This term may also be used when more than one person or body bears such
        responsibility. 
        MoEML uses the term  author to designate a
        contributor who is wholly or partly responsible for the original content of either a
        born-digital document, such as an encyclopedia entry, or a primary source document, such as
        a MoEML Library text.
      
      
       
        Project director
        A person or organization with primary responsibility for all
        essential aspects of a project, or that manages a very large project that demands senior
        level responsibility, or that has overall responsibility for managing projects, or provides
        overall direction to a project manager.
        MoEML’s Project Director directs the intellectual and scholarly aspects of
        the project, consults with the Advisory and Editorial Boards, and ensures the ongoing
        funding of the project.
      
       
        Programmer
        A person or organization responsible for the creation and/or
        maintenance of computer program design documents, source code, and machine-executable
        digital files and supporting documentation.
        MoEML uses the term  programmer to designate a person
        or organization responsible for the creation and/or maintenance of computer program design
        documents, source code, and machine-executable digital files and supporting
        documentation.
       
       
        Project manager
        MoEML uses the term  Project Manager for a person who
        handles the administration for the project.
      
     
    
    
     
       Created document.
    
   
     
       
         
          MoEML’s PDF Developer Documentation
        
      
    
     
       
          XSLT files responsible for creating MoEML PDFs:
         
            pdf_globals.xsl
            createPdfs.xml (ant application)
            add_special_styles_to_fo_master.xsl
            get_attribute_sets_names.xsl
            list_classes_for_pdf.xsl
            list_fonts_for_pdf.xsl
            list_images_for_pdf.xsl
            xhtml5_to_fo_master.xsl
            xhtml5_to_fo_styles_module.xsl
        
         This documentation goes through the  XSL and  XML files responsible for building the PDFs.
      
       
          pdf_globals.xsl
         The  pdf_globals is an  XSL file that contains the variables, parameters, and functions necessary for the creation of every PDF.  $docId is the variable that gets the  xml:id of the document, so that we can use it to build this particular file and all of its required components.  $attSetDoc is a variable that gets the docId-specific styling module and the master styling module (used later to assign corresponding attribute sets as per the respective classes). Two parameters assign the locations of necessary folders: the  FO folder and the output folder. Two other parameters get the titles of the document at hand: one for born digital files and one for primary sources.  pdf_globals also contains a function,  getAtts, that allows us to add attributes from the class’ corresponding attribute sets, in addition to the attributes that are unique to the class, which we retrieve from the style element in the original  HTML source document. This function finds the appropriate attributes selected in the master styles module, and then finds the document specific attribute sets. Attributes get added if they were not already, and if they are already written in, they get overwritten by the specific styling. The same function also manipulates some attributes and their values, to accommodate the  FO restrictions, such as  rem (replaced with  pt), and the small-caps font variant, which gets a specific font-family selected for this particular purpose.
      
       
          createPdfs.xml
          createPdfs.xml is the Ant application that builds the selected PDFs. This file runs through the terminal application. It checks for  FOP; if it is not available it gets downloaded. If  FOP is downloaded, it checks whether or not it is up to date and updates it if need be. Images and fonts folders are defined in properties, to be used later in retrieving the appropriate material. The  listFiles property lists the document ids that need to be built into PDFs.
         The Ant application creates a list of images mentioned and used in the source documents and then downloads said images. The same process is applied to the fonts. In addition, the ant application runs the following targets:
         
           
              createSpecialStylesModule
             Creates a special styles module, particular to the document that is being processed. This special module contains the formatting from the  html/ head/ style element.
          
           
              addSpecialModulesToMaster
             Adds the special module to other  XSLTs responsible for the creation of the PDFs.
          
           
              ValidateFo
             Validates the resulting  FO document.
          
           
              getSourceFileFromJenkins
             Is responsible for retrieving the source  HTML file from our server.
          
           
              processOneFile
 Is the main (though not the default) target that processes the file ( docId) in the following order: gets the file from Jenkins, creates the special styles module, adds the special module to the master module, creates the images list, copies the images, creates the fonts list, copies the fonts, creates the  FO file, creates the PDF, and finally gets the  .png of the title (cover) page (which is used in the creation of ePubs).
          
           
              createFO
             Creates the  XSL:FO file from the  HTML source file, as per the  docId_xhtml5_to_fo transformation.
          
           
              createPdf
             Creates the PDF file from the  docID.fo file using the  FOP application.
          
           
              getTitlePage
             Gets the PDF’s title page in  .png format, so we can use it for the ePubs. For this we use  pdftoppm execution.
          
           
              buildFiles
             Is the default target; it runs  processOneFile to build all the documents listed in the listFiles property.
          
        
      
       
          add_special_styles_to_fo_master.xsl
         This  XSL transformation is designed to include a special  XSL styles module in the  xhtml5_to_fo_master. It does so by creating a variable that gets the attributes from the special styles module. The file has templates that match onto the following elements:  div,  span, and  img. These templates find the classes and their corresponding attribute sets to add the necessary attributes and their values, and apply other templates as required.
      
       
          get_attribute_sets_names.xsl
         This stylesheet is a rather simple one that reads the special styles module ( docId_styles_module.xsl) and gets the attribute sets that need to be used. It stores them in an output file  listOfSets.txt which gets used in  xhtml5_to_fo_master.xsl.
      
       
          list_classes_for_pdf.xsl
         This  XSL transformation is designed to read the  style element in the  HTML file and list the styling classes needed for the particular PDF being built. It starts by parsing the  style element as a string, stored in a variable ( $style). The variable  $parsedClasses stores the name of the classes so that we use them later in naming the attribute-sets.  $attribute is the variable that has the attribute names as well as their values.
         The root template of this transformation creates the attribute sets corresponding to classes mentioned in the style element of the source file. It results in a document saved in  db/data/static/xsl called  $docId_styles_module.xsl. The template recreates the following variables:  parsedClasses, and  parsedStyle.
      
       
          list_fonts_for_pdf.xsl
         This  XSLT is designed to read the  CSS files and list the fonts needed for the particular PDF being built. We adopt it from the transformation designed for ePubs. The root (main) template creates a list of fonts mentioned in the corresponding  CSS files, to be then used by the ant file to copy these fonts into the PDF container folder. It first creates a variable that lists the css files. The files are then tokenized in $tokenizedCss and normalized in  $allCss. The variable  $parsedCssFonts results in a document  listOfFonts.txt that contains  $distinctSiteFonts, which gets the distinct values of the  $parsedCssFonts variable.
      
       
          list_images_for_pdf.xsl
         This  XSLT reads the  XHTML and  CSS files and list the images needed for the particular PDF being built. It is very similar in its structure to  list_fonts_for_pdf.xsl: The root template creates a list of images mentioned in the corresponding  CSS files as well as the  XHTML file, to be then used by the ant file to copy these images into the PDF container folder. This template first creates a variable that lists the  CSS files. The files are then tokenized in  $tokenizedCss and normalized in  $allCss. The variable  $parsedCssImages results in a document  listOfImages.txt that contains  $distinctSiteImages, which gets the distinct values of the  $parsedCssImages variable. This transformation also has a few hard coded images, given that they are not present in the  CSS or  XHTML files.
      
       
          xhtml5_to_fo_master.xsl
         This  XSLT is designed to convert a MoEML  XHTML5 static site document into a PDF. It converts the document to  XSL:FO, validates the  FO, and then the calling Ant script uses  FOP to generate a PDF. This file includes the styles module  xhtml5_to_fo_styles_module.xsl (discussed below), and  pfd_globals.xsl. The root template sets up the  FO basics: four simple page masters (title page, first page, recto page, and verso page). The sequence of pages follows. The  main page-sequence contains the footers (title page, recto, and verso) and headers (recto and verso). The headers differ in their code as per born digital or primary source, because of the structure of their titles. The template that matches on the  html element applies templates (both named and unnamed as discussed below).
           
             
               CreateTitlePage
               This template processes the metadata in the page header to get the key information. The aesthetic and stylistic components include: a background image, two flower logos (top and bottom), decorative lines (top and bottom) between which the title of the document sits, and a snippet of the agas map. The size of the title and the authors depends on the length of the title and the number of authors listed. The title page also contains the edition information (which is basically the release version at the time of the build).
            
             
               CreateHybridTitlePage
               This named template creates another title page that contains hybrid metadata, which includes the title, authors, compilers, and editors, in addition to the publication information. This template contains two conditions: one is when the document at hand is a born digital file, and the other is when it is a primary source file.
            
          
        
      
       
         Unnamed Templates
         
           
             Matches  div
              divs are transformed into  fo:blocks. Their ids are replicated into  id attributes. Depending on the class attribute of the  div, the  fo:block element gets assigned the appropriate attribute set(s).  divs that are children or descendant of the appendix  div, get special attribute sets that correspond to the appendix styling of the PDF.
            
          
           
             Matches  nav
              nav elements are transformed into  fo:blocks, and their ids are copied into corresponding  id attributes.
            
          
           
             Matches  ul
              ul elements are transformed into  fo:list-block elements. Their ids are replicated into corresponding  id attributes.  uls that are descendant of the appendix get special styling to correspond with the appendix styles.
            
          
           
             Matches  ol
              ol elements are transformed into  fo:list-block elements. Their ids are replicated into corresponding  id attributes.  ols that are descendant of the appendix get special styling to correspond with the appendix styles.
          
           
             Matches  li
              li elements are transformed into  fo:list-item elements. Every  fo:list-item contains an  fo:list-item-label and an  fo:list-item-body. Depending on their level in the list structure,  fo:list-item-label and  fo:list-item-body elements get the following attribute sets, respectively:  list-item-label and  list-item-body,  list-item-label-descendant and  list-item-body-descendant,  list-item-label-level3 and  list-item-body-level3,  list-item-label-appendix and  list-item-body-appendix. In tables,  fo:list-item-label and  fo:list-item-body get attribute sets  list-item-label-table and  list-item-body-table, respectively. The page menu  fo:list-item gets the attribute set  pageMenu.
          
           
             Matches  table
              tables are transformed into  fo:table. When the table has a class attribute  contentTable, the  fo:table element gets the  contentTable attribute set.
          
           
             Matches  thead
              theads are transformed into  fo:table-header elements, with attribute set  table-head-td.
          
           
             Matches  tbody
              tbody elements are transformed into  fo:table-body elements.
          
           
             Matches  tr
              tr elements are transformed into  fo:table-row elements.
          
           
             Matches  td
              td elements are transformed into  fo:table-cell elements.  td elements with parents or ancestor  thead elements acquire the attribute set  table-head-td; if the  td element has an ancestor  table that has attribute class  contentTable, the  fo:table-cell gets the attribute set  contentTable-td; otherwise,  fo:table-cell elements get the  table-cell attribute set.
          
           
             Matches  a
              a elements are transformed into  fo:basic-links, with attributes:  id(if applicable),  external-destination or  internal-destination for the value of the  href attribute of the  a element, and color. If  href ends with  .htm, or contains  http,  jpg,  mp3, the  fo:basic-link gets an external destination attribute. The  fo:basic-link also gets an  external-destination attribute and other appropriate styling attributes, if the  a element has a  class attribute that is not  noteMarker nor  returnFromNote nor  local. Otherwise,  fo:basic-link gets an  internal-destination attribute.
          
           
             Matches  a [@href[starts-with(., ‘#’)]][not(@class= ‘pilcrow’)]
             This template is responsible for links that refer to ids, mostly with internal references. We use the variable  $thisid to identify the  id of the current  a element. If  $thisid is not stated anywhere else in the document, then the  fo:basic-link will have an  external-destination, with https://mapoflondon.uvic.ca/$thisid.htm. Otherwise, the  fo:basic-link will have an internal destination, without the #, and with the appropriate attribute sets as per the class attributes.
          
           
             Matches  p
              p elements become  fo:blocks.
          
           
             Matches  span
              span elements become  fo:inline elements.
          
           
             Matches  strong
              strong elements become  fo:block elements when they have a parent element  li, and  fo:inline elements otherwise.
          
           
             Matches  pre
              pre elements become  fo:block elements when they have a parent element  li, and  fo:inline elements otherwise.
            
          
           
             Matches  q
              q elements become  fo:block elements when they have a parent element  li, and  fo:inline elements otherwise.
          
           
             Matches  blockquote
              blockquote elements become  fo:block elements with the  blockquote attribute set.
          
           
             Matches  code
              code elements are transformed into  fo:inline elements with the  code attribute set.
          
           
             Matches  img
              img elements are transformed into  fo:external-graphic elements. They all have the  images attribute set, and when appropriate, they have an additional attribute set that corresponds to their appropriate class, including  acknowledgementImg and  socialMediaImg.
          
           
             Matches  figure
              figure elements are transformed into  fo:block elements.
          
           
             Matches  figcaption
              ficgaption elements are transformed into  fo:block elements. When the  figcaption element contains the strings  horizontal rule or  Printer’s ornament, the  fo:block element gets the attribute set  figcaption_special; otherwise it gets the attribute set  figcaption.
          
           
             Matches  h1
              h1 elements are transformed into  fo:block elements. When  h1 has a child  span that has a  class attribute  titlePart, it gets both attribute sets  h1 and  h1TitlePart, otherwise it only get the attribute set  h1.
          
           
             Matches  h2
              h2 elements are transformed into  fo:block elements. When they are appendix headers, they get the attribute set  appendixH2, otherwise they get the attribute set  h2.
          
           
             Matches  h3
              h3 elements are transformed into  fo:block elements. When they are appendix headers, they get the attribute set  appendixH3; when they are appendix list headers, they get the attribute set  appendixListH3, otherwise they get the attribute set  h3.
          
           
             Matches  h4
              h4 elements are transformed into  fo:block elements. When they are appendix headers, they get the attribute set  appendixH4, otherwise they get the attribute set  h4.
          
           
             Matches  br
              br elements are transformed into  fo:block elements.
          
           
             Matches  hr
             [Primary Source Element]  hr elements are transformed into  fo:leader elements, with  id attributes when appropriate.
          
        
         This transformation is also responsible for removing the following components from the document: the top banner,  See XML,  More Info, blackletter typeface and toggle, script elements,  Send Feedback, the footer menu, the info popup, document mentions, person’s contributions, person’s mentions, the citation header, facsimile figures, links to  agas.css and  agas_embedded.css from the header, pilcrow (¶) links, and social media logos. It also replaces  lightbox.css with  nav.css, rewrites some links as necessary, renames  Personography into  Contributors, rearranges appendix lists (historical persons and variant spellings), and sorts the personography alphabetically.
         Note that there are other removals that happen through  add_special_styles_to_fo_master.xsl.
      
       
          xhtml5_to_fo_styles_module.xsl
         This  XSLT module contains the styling and layout data for the  XHTML5 to  XSL:FO transformation, which turns MoEML  XHTML5 static site pages into PDFs. We will set up the pages initially so recto and verso have slightly different margins, to allow for binding along the long edge. We may decide to eliminate this distinction at some point. This module works with the special one created for the particular files being transformed. It contains all the master attribute sets needed, which have been mostly inspired from the various MoEML site  CSS files. The attribute sets in this document do not include attributes or values that do not agree with  XSL:FO or  FOP. The structure is straight-forward: the  xsl:stylesheet element contains all  xsl:attribute-set elements that must have a  name attribute. These elements in turn contain  xsl:attribute elements, which also must have a  name attribute and a value.
      
    
  
